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A Bayesian method with spatial constraint is proposed for vessel segmentation in retinal images. The proposed model makes the
assumption that the posterior probability of each pixel is dependent on posterior probabilities of their neighboring pixels. An energy
function is defined for the proposedmodel. By applying themodified level set approach tominimize the proposed energy function,
we can identify blood vessels in the retinal image. Evaluation of the developed method is done on real retinal images which are
from the DRIVE database and the STARE database. The performance is analyzed and compared to other published methods using
a number of measures which include accuracy, sensitivity, and specificity. The proposed approach is proved to be effective on these
two databases. The average accuracy, sensitivity, and specificity on the DRIVE database are 0.9529, 0.7513, and 0.9792, respectively,
and for the STAREdatabase 0.9476, 0.7147, and 0.9735, respectively.The performance is better than that of other vessel segmentation
methods.

1. Introduction

Retinal vessel segmentation plays an important role in med-
ical image processing. It can provide much help for the
detection of eye diseases and other medical diagnosis. A
large number ofmethods for retinal vessel segmentation have
been proposed. A survey on retinal vessel segmentation
methods is presented in the literature [1]. According to
the image processing methodologies and algorithms, these
retinal vessel segmentation approaches can be categorized
into pattern recognition techniques, matched filtering, vessel
tracking, mathematical morphology, multiscale approaches,
and model-based approaches.

The algorithm based on pattern recognition can detect or
classify the retinal blood vessel features and the background.
This group of algorithms can be divided into two categories:
supervised and unsupervised approaches. In supervised
methods, the prior labeling information is used to decide
whether a pixel belongs to a vessel or not. In [2], a ridge-
based vessel segmentation methodology has been proposed.
In [3], a method which combines the radial projection and
the support vector machines classifier has been introduced
for vessel segmentation. A supervised method which is based

on neural network has been presented in [4]. The Gaussian
matched filter and the k-nearest neighbor algorithm are used
for vessel segmentation [5]. In [6], a 2D Gabor wavelet
has been applied for vessel segmentation. The unsupervised
methods perform the vessel segmentation without any prior
labeling knowledge. In [7], a spatially weighted fuzzy C-
means clustering method has been used for vessel segmen-
tation. In [8], a vessel detection system based on a maximum
likelihood estimation has been developed.

The matched filtering approaches [9–11] are also popular
methods to detect and measure blood vessels. In [9], a
methodwhich combines local and region-based properties of
retinal blood vessels has been described. In [10], a modified
second-order Gaussian filter has been used for retinal vessel
detection. In [11], the zero-mean Gaussian filter and the first-
order derivative of the Gaussian have been applied to detect
vessels.

In the vessel tracking-based method framework [12–
14], several seed pixels are chosen on the boundaries and
the centerlines of vessels, and then we detect vessels from
these seeded pixels. In [13], the Bayesian method with the
maximum a posteriori (MAP) probability criterion has been
used to identify the vessel’s boundary points. In [12, 14],
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a probabilistic tracking method has been used to detect the
vessel edge points by using local grey level statistics and
vessel’s continuity properties.

The mathematical morphology-based methods extract
image components which are useful in the representation
and description of region shapes such as features, boundaries,
skeletons, and convex hulls. In [15], a unique combination
of vessel centerlines detection and morphological bit plane
slicing has been introduced to extract the blood vessel tree
form the retinal images. The fast discrete curvelet transforms
and multistructure mathematical morphology have been
employed for vessel detection [16]. In [17], the combination
of morphological filters and cross-curvature evaluation have
been used to segment vessel-like patterns. A difference of
offset gaussian filter [18] has been utilized for retinal vas-
culature extraction. A general framework of locally adaptive
thresholdingmethod for retinal vessel segmentation has been
introduced in [19].

Multiscale approaches are to separate out information
related to the blood vessel having varying width at different
scales. A scale space segmentation algorithm has been pro-
posed in [20], which has been used to measure and quantify
geometrical and topological properties of the retinal vascular
tree. Two extensions of this scale space algorithm have been
demonstrated in [21, 22]. A multi-scale line tracking for
vasculature segmentation has been presented in [23].

Themodel-based approaches are very popular techniques
for image segmentation and have been used for retinal vessel
segmentation. Active contour models which are based on
curve evolution are very commonly used for image segmen-
tation. The main advantage is their great performance.
Recently, they have been used to detect boundaries of vessels
in retinal images [24–28]. The classical snake in combination
with blood vessel topological properties has been used to
extract the vasculature from retinal image [29]. A methodo-
logy based on nonlinear projections has been proposed for
vessel segmentation [30]. Level set method is a very good
approach to deal with topological changes [31] and has
been successfully used for vessel segmentation of retinal
images [32, 33]. Graph-based approach is very popular and
interesting method for image segmentation and also has
been applied to vessel boundary detection [34].

The above methods [12–14] are based on the Bayesian
model. However, the main disadvantage of these approaches
is that the pixels are assumed to be independent. Spatial
dependence is very important to guarantee connectedness of
the vessel structure. To take into account the dependence in
the spatial space, Markov random field (MRF) models have
beenwidely used for solving the image segmentation problem
[35–37]. However, one of the drawbacks of the MRF-based
methods is that the computational cost is quite high.

In this paper, we present a novel Bayesian segmentation
method for vessel segmentation.The proposed method takes
the spatial information into account.We found thatmaximiz-
ing log-likelihood function is equivalent to energy function
minimization.The parameters of the model can be estimated
via energy minimization. In order to detect the boundaries
of the blood vessels, the modified level set approach is used
for solving the energy function minimization problem. The

method was evaluated on two publicly available databases,
the DRIVE database [38] and the STARE database [39].
Results of the proposed method are compared to those from
other methods, leading to the conclusion that our approach
outperforms other techniques.

The remainder of this paper is organized as follows. In
Sections 2 and 3, we describe the details of the proposed
model and the modified level set algorithm. In Section 4, we
show the experimental results and conclude with a discussion
in Section 5.

2. Proposed Model

2.1. Image Segmentation. Let X = {𝑥
𝑖
, 𝑖 ∈ Ω} denote an

observed image, where 𝑥
𝑖
is the observation of pixel 𝑖 andΩ is

image domain. LetK = {1, 2, . . . , 𝐾} denote a label set, and𝐾
is the total number of classes. LetY = {𝑦

𝑖
∈K, 𝑖 ∈ Ω} be an

image of labels.The aim of labeling is to assign a label 𝑦
𝑖
∈K

to each pixel 𝑖 ∈ Ω, based on 𝑥
𝑖
.The goal of segmentation is to

separate the image domainΩ into disjoint regionsΩ
1
, . . . , Ω

𝐾

and ensure smooth inside each region Ω
𝑘
. Notice that, given

a labelingY, the collection Ω
𝑘
= {𝑖 ∈ Ω | 𝑦

𝑖
= 𝑘} for 𝑘 ∈ K

is one of these regions. Also, given the segmentation Ω
𝑘
for

𝑘 ∈ K, the image {𝑦
𝑖
| 𝑦
𝑖
= 𝑘 if 𝑖 ∈ Ω

𝑘
, 𝑖 ∈ Ω} is a labeling.

It is a one-to-one relationship between the labeling and the
segmentation. Thus, the image segmentation problem can be
considered as a labeling problem.

2.2. Bayesian Model with Spatial Constraint. In Bayesian
framework, inference is often carried out by maximizing the
posterior distribution

𝑃 (Y | X) ∝ 𝑃 (X | Y) 𝑃 (Y) , (1)

where 𝑃(X | Y) is the likelihood function and 𝑃(Y) is the
prior distribution.

When the pixels are considered independent of each
other, the likelihood function can be written as

𝑃 (X | Y) = ∏
𝑖∈Ω

𝑃 (𝑥
𝑖
| 𝑦
𝑖
)

=

𝐾

∏

𝑘=1

∏

𝑖∈Ω𝑘

𝑃 (𝑥
𝑖
| 𝑦
𝑖
= 𝑘) .

(2)

However, the spatial relationships between neighboring
pixels are not taken into account. To improve the accuracy
of the segmented results, the spatial dependencies should be
taken into account.

In this paper, we use a modeling strategy for the spatial
dependencies between the conditional probabilities. The
conditional probability 𝑃(𝑥

𝑖
| 𝑦
𝑖
) is defined as a mixture dis-

tribution over the conditional probabilities of neighboring
pixels 𝑗, 𝑗 ∈N

𝑖
, that is,

𝑃 (𝑥
𝑖
| 𝑦
𝑖
) = ∏

𝑗∈N𝑖

𝜆
𝑖𝑗
𝑃 (𝑥
𝑗
| 𝑦
𝑗
) , (3)

where 𝜆
𝑖𝑗
are fixed positive weights and for each 𝑖 holds

∑
𝑗
𝜆
𝑖𝑗
= 1. The mixing weight 𝜆

𝑖𝑗
depends on the geometric
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closeness between the pixels 𝑖 and 𝑗. Thus, the above likeli-
hood function can be expressed as

𝑃 (X | Y) = ∏
𝑖∈Ω

∏

𝑗∈N𝑖

𝜆
𝑖𝑗
𝑃 (𝑥
𝑗
| 𝑦
𝑗
)

= ∏

𝑖∈Ω

𝐾

∏

𝑘=1

∏

𝑗∈N𝑖 ⋂Ω𝑘

𝜆
𝑖𝑗
𝑃 (𝑥
𝑗
| 𝑦
𝑗
= 𝑘) .

(4)

Let 𝑃(𝑥
𝑖
| 𝜃
𝑘
) be the parameter form of the 𝑃(𝑥

𝑖
| 𝑦
𝑖
= 𝑘).

Usually, it is assumed to be Gaussian distribution

𝑃 (𝑥
𝑖
| 𝜃
𝑘
) =

1

√2𝜋𝜎

2

𝑘

exp(−
(𝑥
𝑖
− 𝜇
𝑘
)

2

2𝜎

2

𝑘

) . (5)

The log-likelihood function of Bayesianmodel (4) is given
by

L (𝜇, 𝜎)

= ∑

𝑖∈Ω

𝐾

∑

𝑘=1

∑

𝑗∈N𝑖 ⋂Ω𝑘

log (𝜆
𝑖𝑗
𝑃 (𝑥
𝑗
| 𝜃
𝑘
))

= ∑

𝑖∈Ω

𝐾

∑

𝑘=1

∑

𝑗∈N𝑖 ⋂Ω𝑘

[log 𝜆
𝑖𝑗
+ log𝑃 (𝑥

𝑗
| 𝜃
𝑘
)]

= ∑

𝑖∈Ω

𝐾

∑

𝑘=1

∑

𝑗∈N𝑖 ⋂Ω𝑘

[

[

log 𝜆
𝑖𝑗
−

1

2

log (2𝜋𝜎2
𝑘
) −

(𝑥
𝑗
− 𝜇
𝑘
)

2

2𝜎

2

𝑘

]

]

,

(6)

where 𝜆
𝑖𝑗
are fixed positive weights and for each 𝑖 it holds

∑
𝑗
𝜆
𝑖𝑗
= 1. The mixing weight 𝜆

𝑖𝑗
depends on the geometric

closeness between the pixels 𝑖 and 𝑗 [40].
The geometric closeness ℎ

𝑖𝑗
is a Gaussian function of the

magnitude of the relative position vector of pixel 𝑗 from pixel
𝑖, ‖𝑢
𝑖
− 𝑢
𝑗
‖. The geometric closeness function is given as a

decreasing function when the distance ‖𝑢
𝑖
− 𝑢
𝑗
‖ increases as

ℎ
𝑖𝑗
= exp(

−







𝑢
𝑖
− 𝑢
𝑗







2

2𝜎

2

𝑔

) , (7)

where 𝜎
𝑔
is parameter, which defines the desired structural

locality between neighboring pixels, and 𝑢
𝑖
and 𝑢

𝑗
are the

location of the pixel 𝑖 and 𝑗, respectively. We use a 3 × 3
neighborhood window and we suggest 𝜎2

𝑔
= 10.

We define the mixing weight 𝜆
𝑖𝑗
as follows:

𝜆
𝑖𝑗
=

ℎ
𝑖𝑗

∑
𝑗∈𝑁(𝑖)

ℎ
𝑖𝑗

. (8)

Note that 𝜆
𝑖𝑗
are fixed constants, and we can drop the

term that depends only on 𝜆
𝑖𝑗
. Image segmentation can be

performed by maximizing log-likelihood function L(𝜇, 𝜎)
(6) with respect to the parameter 𝜇, 𝜎 as

argmax
𝜇,𝜎

L (𝜇, 𝜎)

⇐⇒ argmax
𝜇,𝜎

−

1

2

∑

𝑖∈Ω

𝐾

∑

𝑘=1

∑

𝑗∈N𝑖 ⋂Ω𝑘

[

[

log (2𝜋𝜎2
𝑘
)

+

(𝑥
𝑗
− 𝜇
𝑘
)

2

𝜎

2

𝑘

]

]

.

(9)

2.3. Energy Minimization. Since the logarithm is a monoton-
ically increasing function, it it more convenient to consider
the negative likelihood function as an energy function as

E (𝜇, 𝜎) =
1

2

∑

𝑖∈Ω

𝐾

∑

𝑘=1

∑

𝑗∈N𝑖 ⋂Ω𝑘

[

[

log (2𝜋𝜎2
𝑘
) +

(𝑥
𝑗
− 𝜇
𝑘
)

2

𝜎

2

𝑘

]

]

.

(10)

Thus, image segmentation problem can be solved by mini-
mizing energyE(𝜇, 𝜎) (10) with respect to the parameter 𝜇, 𝜎.

We assume that the variance of the proposed energy
(10) has the common form 𝜎. Thus, the functional for the
proposed energy (10) can be written as

F (𝜇) = ∑

𝑖∈Ω

𝐾

∑

𝑘=1

∑

𝑗∈N𝑖 ⋂Ω𝑘

(𝑥
𝑗
− 𝜇
𝑘
)

2

. (11)

We introduce kernel function 𝜌(𝑥
𝑖
, 𝑥
𝑗
) as a nonnegative

window function

𝜌 (𝑥
𝑖
, 𝑥
𝑗
) = {

1, if 𝑗 ∈N
𝑖
,

0, if otherwise.
(12)

With the window function, the energy function (11) can be
rewritten as

F (𝜇) = ∑

𝑖∈Ω

𝐾

∑

𝑘=1

∑

𝑗∈Ω𝑘

𝜌 (𝑥
𝑖
, 𝑥
𝑗
) (𝑥
𝑗
− 𝜇
𝑘
)

2

. (13)

By exchanging the order of sum, we have

F (𝜇) =

𝐾

∑

𝑘=1

∑

𝑗∈Ω𝑘

∑

𝑖∈Ω

𝜌 (𝑥
𝑖
, 𝑥
𝑗
) (𝑥
𝑗
− 𝜇
𝑘
)

2

. (14)

For convenience, we can rewrite the above energy functional
F(𝜇) in the following form:

F (𝜇) =

𝐾

∑

𝑘=1

∑

𝑗∈Ω𝑘

𝑒
𝑘
(𝑥
𝑗
) , (15)

where 𝑒
𝑘
(𝑥
𝑗
) is the function defined by

𝑒
𝑘
(𝑥
𝑗
) = ∑

𝑖∈Ω

𝜌 (𝑥
𝑖
, 𝑥
𝑗
) (𝑥
𝑗
− 𝜇
𝑘
)

2

. (16)

Weminimize the above proposed energy functionalF(𝜇)
using the modified level set approach.



4 Computational and Mathematical Methods in Medicine

3. Algorithm

In this section, the energy (10) is converted to a level set
formulation by representing the disjoint regions Ω

1
, . . . , Ω

𝐾

with a number of level set functions, with a regularization
term on these level set functions.

We consider the two-phase level set formulation. The
image domain X is segmented into two disjoint regions
Ω
1
and Ω

2
. In level set methods, a level set function is a

function that takes positive and negative signs. We use level
set function to represent a partition of the domainX into two
disjoint regionsΩ

1
andΩ

2
as

Ω
1
= {𝑥
𝑖
, 𝜙 (𝑥
𝑖
) > 0} , Ω

2
= {𝑥
𝑖
, 𝜙 (𝑥
𝑖
) < 0} . (17)

The regions Ω
1
and Ω

2
can be represented with their

membership functions defined by the Heaviside function
𝐻(𝜙) as

𝐻(𝜙) = {

1, if 𝜙 ≥ 0,
0, if 𝜙 < 0,

𝛿 (𝜙) =

𝑑

𝑑𝜙

𝐻 (𝜙) .

(18)

Thus, the energy (15) can be expressed as the following
level set formulation:

F (𝜇) = ∑

𝑗∈Ω1

𝑒
1
(𝑥
𝑗
)𝐻 (𝜙 (𝑥

𝑗
))

+ ∑

𝑗∈Ω2

𝑒
2
(𝑥
𝑗
) (1 − 𝐻(𝜙 (𝑥

𝑗
))) ,

(19)

where 𝑒
𝑘
(𝑥
𝑗
) is defined in (16). The level set function 𝜙 and

the parameters 𝜇 are the variables of the energyF (19).
Let L(𝜙) and R(𝜙) denote the regularization terms of

level set function 𝜙. The energy termL(𝜙) is defined by [41]

L (𝜙) = ∑

𝑖∈Ω






∇𝐻 (𝜙 (𝑥
𝑖
))






= ∑

𝑖∈Ω

𝛿 (𝜙 (𝑥
𝑖
))






∇𝜙 (𝑥
𝑖
)






,

(20)

which computes the arc length of the zero level contour of 𝜙
and serves to smooth the contour [41].The energy termR(𝜙)
is defined by [42]

R (𝜙) = ∑

𝑖∈Ω

1

2

(






∇𝜙 (𝑥
𝑖
)






− 1)

2
, (21)

where function R is an energy density function, which is
called a distance regularization term [42].

Therefore, combining these two energy terms with the
energyF (19), the total energy functional becomes

F (𝜙, 𝜇) = F (𝜙, 𝜇) + 𝛼L (𝜙) + 𝛽R (𝜙)

= ∑

𝑗∈Ω1

𝑒
1
(𝑥
𝑗
)𝐻 (𝜙 (𝑥

𝑗
))

+ ∑

𝑗∈Ω2

𝑒
2
(𝑥
𝑗
) (1 − 𝐻(𝜙 (𝑥

𝑗
)))

+ 𝛼∑

𝑖∈Ω

𝛿 (𝜙 (𝑥
𝑖
))






∇𝜙 (𝑥
𝑖
)






+ 𝛽∑

𝑖∈Ω

1

2

(






∇𝜙 (𝑥
𝑖
)






− 1)

2
.

(22)

By minimizing the above energy, we obtain the result of
image segmentation given by the level set function 𝜙 and the
estimation of the parameters 𝜇. The details of the algorithm
for minimizing the energy (22) are given in the next section.

3.1. Modified Level Set Algorithm. The energy minimization
is achieved by an iterative process: in each iteration, we
minimize the energy F(𝜙, 𝜇) (22) with respect to each of
its variables 𝜙, 𝜇, given the other two updated in previous
iteration. We give the solution to the energy minimization
with respect to each variable as follows.

Keeping𝜇fixed andminimizingF(𝜙, 𝜇) (22)with respect
to 𝜙, we use the gradient descentmethod to solve the gradient
flow equation as

𝜕𝜙

𝜕𝑡

= −

𝜕F

𝜕𝜙

, (23)

where 𝜕F/𝜕𝜙 is the Gâteaux derivative [41] of the energyF.
We compute the Gâteaux derivative 𝜕F/𝜕𝜙 and the

corresponding gradient flow equation is

𝜕𝜙

𝜕𝑡

= 𝛿 (𝜙) (𝑒
2
− 𝑒
1
) + 𝛼𝛿 (𝜙) div(

∇𝜙






∇𝜙






)

+ 𝛽 div((1 − 1






∇𝜙






)∇𝜙) .

(24)

During the evolution of the level set function according
to (24), the variables 𝜇 are updated by minimizing the energy
F(𝜙, 𝜇) (22) with respect to 𝜇.

Keeping𝜙fixed andminimizingF(𝜙, 𝜇) (22)with respect
to 𝜇, the variable 𝜇 can be expressed as

𝜇
1
=

∑
𝑖∈Ω
∑
𝑗∈N𝑖

𝑥
𝑗
𝐻(𝜙 (𝑥

𝑗
))

∑
𝑖∈Ω
∑
𝑗∈N𝑖

𝐻(𝜙 (𝑥
𝑗
))

,

𝜇
2
=

∑
𝑖∈Ω
∑
𝑗∈N𝑖

𝑥
𝑗
(1 − 𝐻(𝜙 (𝑥

𝑗
)))

∑
𝑖∈Ω
∑
𝑗∈N𝑖

(1 − 𝐻(𝜙 (𝑥
𝑗
)))

.

(25)



Computational and Mathematical Methods in Medicine 5

Finally, the principal steps of the algorithm are as follows.

(i) Initialize 𝜙𝑛, 𝑛 = 0.
(ii) Compute 𝜇𝑛

𝑘
, 𝑘 = 1, 2 by (25).

(iii) Solve the PDE 𝜕𝜙/𝜕𝑡 = 0 where 𝜕𝜙/𝜕𝑡 is defined in
(24) to obtain 𝜙𝑛+1.

(iv) Checkwhether the solution is stationary. If not, let 𝑛 =
𝑛 + 1 and repeat.

3.2. Numerical Approximation. In numerical implementa-
tion, in order to compute the unknown function 𝜙, we
consider the slightly regularized version of the Heaviside
function𝐻, denoted here by𝐻

𝜀
, which is computed by [41]

𝐻
𝜀 (
𝑧) =

1

2

[1 +

2

𝜋

arctan(𝑧
𝜀

)] . (26)

Accordingly, the dirac delta function 𝛿, which is the derivative
of the Heaviside function, is replaced by the derivative
of approximation Heaviside function 𝐻

𝜀
. The dirac delta

function 𝛿 is given by

𝛿
𝜀 (
𝑧) =

1

𝜋

𝜀

𝜀

2
+ 𝑧

2
. (27)

Since the energy is nonconvex, the solution may be the
local minima. With the Heaviside function𝐻

𝜀
and the dirac

delta function 𝛿
𝜀
, the algorithm has the tendency to compute

the global minimizer. Thus, the algorithm is not sensitive to
the position of the initial curve.

4. Experiments

In this section, we have evaluated and compared the proposed
method for the segmentation of retinal images. The retinal
images are obtained from two publicly available databases the
DRIVE database [38] and the STARE database [39]. In the
experiments, we generally choose the parameters as follows:
𝛼 = 1.0 and the time step Δ𝑡 = 0.1. After many experiments
on a small number of example images, we have found that,
when 𝛽 = 0.001 × 2552, the performance is very good. In all
the following experiments, the values of the parameters are
same.

The images of the DRIVE database are with 565 × 584
pixels and 8 bits per color channel. The database includes
binary imageswith the results ofmanual segmentation,which
have been used as ground truth to evaluate the performance
of the vessel segmentation methods. The retinal images of
the STARE database are digitized to 700 × 605 pixels, 8 bits
per RGB channel. The STARE database contains 20 images
for blood vessel segmentation: 10 normal images and 10
abnormal images. Binary images with manual segmentations
are also available for each image of this database.

Evaluation of the developed method is done on the
DRIVE and STARE databases. Experimental results are
compared to those obtained using other vessel segmentation
methods. To facilitate the comparison with other retinal
vessel segmentationmethods, the segmentation accuracy has

been selected as performance measure. The segmentation
accuracy has been defined by the ratio of the total number
of correctly classified pixels by the number of pixels in
the field of view (FOV). It contains values in the range
[0, 1], with values closer to 1 indicating a good result. Other
important measures are sensitivity and specificity. In this
paper, the sensitivity is estimated by the percentage of pixels
correctly classified as vessel pixels. The specificity stands for
the fraction of pixels erroneously classified as vessel pixels.
The ground truth for evaluating the performance measures
was a manual segmentation result which is provided together
with each database image.

A majority of the pixels are often easy to be classified by
the previous methods; however, some of the pixels, such as
those on the boundary of a vessel, those for small vessels,
and those for vessels near pathology, are difficult to be
classified. The proposed method provides a novel way to
account for spatial dependence between image pixels. Thus,
it can reduce the sensitivity of the segmented results and
guarantee connectedness of the vessel structure.

In the first experiment, the proposed method is done on
retinal vessel images of DRIVE database. Image in Figure 1(a)
shows the original retinal vessel images. The ground truth
of the original retinal image is presented in Figure 1(b). The
segmentation result obtained by using the proposed method
is illustrated in Figure 1(c). It can observed that the proposed
method obtains good results.

In order to test the accuracy and determine the efficiency
of the proposed method, we do experiment on another
retinal vessel image of the DRIVE database and compare
the result with those obtained by other methods. Figure 2(a)
shows a retinal image of the DRIVE database. The image in
Figure 2(b) is the ground truth. Figures 2(c)–2(f) present the
segmentation results obtained by Niemeijer et al.’s method
[5], Staal et al.’s method [2], Mendonça and Campilho
(green intensity) method [18], and the proposed method,
respectively. For visual inspection of the results, the proposed
method produces a very good segmentation result.

To facilitate the comparison of our results to those pre-
sented by other authors in their original papers, the results
have been calculated for the images of the DRIVE database.
The value results of the proposed method are shown in
Table 1. The other vessel segmentation methods which are
reported in their published papers are also presented in
Table 1. The performance measures of the proposed method
in Table 1 are the average values for all the images of DRIVE
database. We can view that the proposed method can capture
more correctly classified vessel pixels and less erroneously
classified vessel pixels than the other methods. The average
accuracy of the proposed method is better than the other
techniques.

In order to further test the accuracy and determine the
efficiency of the proposed method, the proposed method has
been tested on the images of the STARE database. Figures
3(a) and 3(d) show two retinal images of STARE database.
Figures 3(b) and 3(e) present the ground truth, respectively.
The results obtained by using the proposedmethod are shown
in Figures 3(c) and 3(f), respectively. For visual inspection, it
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(a) (b) (c)

Figure 1: Experiment on two retinal images of DRIVE database. (a) Original retinal images. (b) Ground truth. (c) Segmentation results
obtained by the proposed method.

(a) (b) (c)

(d) (e) (f)

Figure 2: Experiment on retinal image of DRIVE database. (a) Original retinal image. (b) Ground truth. (c)–(f) Segmentation result obtained
by Niemeijer et al.’s method [5], Staal et al.’s method [2], Mendonça and Campilho (green intensity) method [18], and the proposed method,
respectively.

can be seen that the proposed method can obtain very good
results.

To compare our results to those reported in other pub-
lished papers, we give the performance measures in Table 2.
The average accuracy, sensitivity, and specificity are used to

measure the performance. We can note that the proposed
method performs better than the other techniques.

The execution time of the proposed method depends on
many parameters. For the images of the STARE database, one
iteration time of the proposedmethod is less than 10 seconds.
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(a) (b) (c)

(d) (e) (f)

Figure 3: Experiment on retinal images of STARE database. (a), (d) Original retinal images. (b), (e) Ground truth. (c), (f) Segmentation
results obtained by the proposed method.

Table 1: Performance of vessel segmentation methods (DRIVE
images).

Method Average
accuracy Sensitivity Specificity

Staal et al. [2] 0.9442 0.7194 0.9773
You et al. [3] 0.9434 0.7410 0.9751
Maŕın et al. [4] 0.9452 0.7067 0.9801
Niemeijer et al. [5] 0.9417 0.6898 0.9696
Zhang et al. [11] 0.9382 0.7120 0.9724
Yin et al. [12] 0.9267 0.6252 0.9710
Fraz et al. [15] 0.9430 0.7152 0.9769
Miri and Mahloojifar
[16] 0.9458 0.7352 0.9795

Mendonça and
Campilho [18] 0.9452 0.7344 0.9764

Martinez-Perez et al.
[21] 0.9344 0.7246 0.9655

Martinez-Perez et al.
[22] 0.9220 0.6602 0.9612

Vlachos and
Dermatas [23] 0.9291 0.7472 0.9550

Espona et al. [29] 0.9352 0.7436 0.9615
Proposed Method 0.9529 0.7513 0.9792

Convergence of the proposed algorithm may be achieved in
less than 10 iterations.

Table 2: Performance of vessel segmentation methods (STARE
images).

Method Average
accuracy Sensitivity Specificity

Staal et al. [2] 0.9442 0.7194 0.9773
Soares et al. [6] 0.9454 0.7212 0.9730
Hoover et al. [9] 0.9267 0.6751 0.9567
Yin et al. [12] 0.9413 0.7249 0.9666
Fraz et al. [15] 0.9442 0.7311 0.9680
Mendonça and
Campilho [18] 0.9440 0.6996 0.9730

Martinez-Perez et al.
[21] 0.9410 0.7506 0.9569

Martinez-Perez et al.
[22] 0.9240 0.7790 0.9409

Zhang et al. [30] 0.9087 0.7373 0.9736
Proposed Method 0.9476 0.7147 0.9735

5. Conclusion

The accurate extraction of the retinal blood vessel can
provide much help for diagnosis of cardiovascular and
ophthalmologic diseases. Even though many techniques and
algorithms have been developed, there is still room for
improvement in blood vessel segmentation methodologies.
In this paper, we have presented a novel Bayesian model
for vessel segmentation. To overcome the drawback that the
spatial information is not taken into account, the proposed
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model exploits the spatial information. To obtain the bound-
aries of the blood vessels, the modified level set approach
is employed for minimizing the proposed energy function.
The proposed method has been tested on real retinal image
databases and the experimental results have been compared
with those of other methods. Since the developed method
takes the spatial information into account, it can result in
very good performance in the detection of narrow and low
contrast vessels and guarantee connectedness of the vessel
structure. The comparison demonstrates that the proposed
method outperforms other methods. In future work, we will
compare the proposed method to other algorithms. Most of
the techniques in the literature and the proposed method
are evaluated on a limited range of databases (DRIVE and
STARE).Wewill domore experiments on larger database and
compare to more techniques in future.

References

[1] M. M. Fraz, P. Remagnino, A. Hoppe et al., “Blood ves-
sel segmentation methodologies in retinal images—a survey,”
Computer Methods and Programs in Biomedicine, vol. 108, no. 1,
pp. 407–433, 2012.
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